Data collection: DIF4 (Stoe \& Cie, 1988). Cell refinement: LATCON (Lundgren, 1983). Data reduction: STOEDATRED, ABSSTOE (Lundgren, 1983). Program(s) used to refine structure: DUPALS (Lundgren, 1983). Molecular graphics: ORTEPII (Johnson, 1976).

The authors thank Mr Hilding Karlsson for technical assistance throughout this work. The work is partly supported by a Grant-in-Aid for Cooperative Research (02302021) and a Grant-in-Aid for General Scientific Research (05640367) from the Ministry of Education, Science and Culture, Japan.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71628 (90 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ABI083]

References

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Endo, M., Kaneko, T., Osaka, T. \& Makita, Y. (1983). J. Phys. Soc. Jpn, 52, 3829-3832.
Ichikawa, M., Gustafsson, T. \& Olovsson, I. (1993). Solid State Commun. 87, 349-353.
Ichikawa, M., Sato, S., Komukae, M. \& Osaka, T. (1992). Acta Cryst. C48, 1569-1571.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lundgren, J.-O. (1983). Crystallographic Computing Programs. Report UUIC-B13-4-05. Institute of Chemistry, Univ. of Uppsala, Sweden.
Stoe \& Cie (1988). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 332-336

Structures of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ ($m=1,4,5$ and 6)

M. Isobe, N. Kimizuka, M. Nakamura and T. Mohri

National Institute for Research in Inorganic Materials, Namiki 1-I, Tsukuba, Ibaraki 305, Japan
(Received 18 August 1992; accepted 2 August 1993)

Abstract

The structures of the title compounds, iron lutetium zinc oxides, can be described as a close packing of O atoms, with Lu atoms in octahedral voids and Fe

and Zn atoms in tetrahedral voids. Blocks constituting $m+1$ layers of Fe and/or Zn atoms along the c axis are alternately stacked with single layers of Lu along the c axis.

Comment

In the process of establishing the phase diagrams of the $R_{2} \mathrm{O}_{3}-A_{2} \mathrm{O}_{3}-M \mathrm{O}(R=\mathrm{Sc}, \mathrm{Y}, \mathrm{In}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, $\mathrm{Lu} ; A=\mathrm{Al}, \mathrm{Fe}, \mathrm{Ga} ; M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Zn}$, Cd) system, Kimizuka, Mohri, Matsui \& Siratori (1988) and Kimizuka \& Mohri (1989) identified several new homologous compounds of $R A O_{3^{-}}$ $(M O)_{m}(m=$ integer $)$, and estimated that these compounds have $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$-type structures through both X-ray powder diffraction and electrondiffraction analysis. However, the compounds, including $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$, have not been studied by the single-crystal X-ray method and structural details were not known. We have, therefore, determined the structure of the title compounds by the single-crystal method to understand the crystal chemistry of the $\mathrm{LuFeO}_{3}-\mathrm{ZnO}$ system. The crystals were grown through the solid-state reaction between $\mathrm{Lu}_{2} \mathrm{O}_{3}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and ZnO powder in platinum tubes at 1823 K for three days.
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})$ (Kimizuka \& Takayama, 1981) is isostructural with the compounds $\operatorname{In}_{2} \mathrm{ZnS}_{4}$ (Lappe, Niggli, Nitsche \& White, 1962) and $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ (Kato, Kawada, Kimizuka \& Katsura, 1975; Malaman et al., 1975). As for these compounds, the structures of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ (Fig. 1) can be described as a close packing of O atoms, with Lu atoms in the octahedral voids of the cubic close-packed layers and Fe and Zn atoms (denoted M) in the tetrahedral voids of hexagonal close-packed layers. Commonly with these compounds, the basic structure consists of LuO_{2}^{-}and $\left(\mathrm{FeZn}_{m}\right) \mathrm{O}_{m+1}^{+}$layers alternately stacked along the c axis. Bond lengths and angles in each coordination polyhedron (Fig. 2) are listed in Table 2. LuO_{6} octahedra share edges forming a continuous layer on the c plane; $\mathrm{O}-\mathrm{Lu}-\mathrm{O}$ bond angles deviate by 10° from the ideal values of 90°. The M lexcluding $M(1)$ for m $=$ even] atoms shift from the centre of gravity of the coordination tetrahedra along the c axis in the opposite direction to the apical O atom to form trigonal bipyramids, resulting in long bonds to the apical O atoms [$M-\mathrm{O}^{\text {ii }} 2.215$ (8)-2.990 (15) \AA; Table 2]. For $m=$ even, the $M(1)$ atom is on the centre of the equatorial triangle by the requirements of symmetry. The $\mathrm{O}-\mathrm{M}-\mathrm{O}$ angles are between 120 and 113°; these angles approach the ideal angle of 109.47° [110.8 (3) ${ }^{\circ}$ in ZnO (Abrahams \& Bernstein, 1969)] when their Zn content increases.
For the compound with $m=1$, the displacement parameters U_{33} of Lu and $\mathrm{O}(1)$ were abnormally large; therefore, the X-ray photographs were exam-

Fig. 1. Projection on ($\overline{\mathrm{I}} 10$) of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}:(a) m=1$, (b) $m=4$, (c) $m=5$, (d) $m=6$ and (e) ZnO . (See footnote to Table 2.)

(a)

(b)

Fig. 2. Environment of (a) the LuO_{6} octahedron and (b) the MO_{5} bipyramid. (See footnote to Table 2.)
ined carefully to check for the presence of any reflections due to superlattice structure. However, no superlattice reflections were detected. As a check for possible slight deviation to lower symmetry, a trial structure refinement was attempted, splitting the Lu-atom site along the c axis. The R factor decreased significantly from 0.036 to 0.025 and shifted the positions by $\pm 0.14 \AA$. Because these deviations were uncertain, we have listed the average structures of the title compounds in Table 1. For compounds with
$m=4,5$ and 6 the X-ray photographs, with enough exposure time, clearly indicate that there is no diffuse line from stacking faults along the c axis.

The relationships between site occupancies of Fe atoms and $w R$ values in each M site are given in Table 3. The significance tests on the R factor (Hamilton, 1965) (R-factor ratio $>\alpha_{b, n} n-m, 0.005$) showed that Fe atoms do not sit in particular M sites. Thus, when we refined the structures we assumed that the Fe and Zn atoms were disordered.

Experimental
 $\mathrm{LuFeO}_{3}(\mathrm{ZnO})$

Crystal data
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})$
$M_{r}=360.19$
Trigonal
$R \overline{3} m$
$a=3.4185$ (1) \AA
$c=25.463$ (3) \AA
$V=257.71$ (3) \AA^{3}
$Z=3$
$D_{x}=6.96 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=39-48^{\circ}$
$\mu=39.70 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$

Sphere

0.0525 mm (radius)

Brown

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: spherical
$T_{\text {min }}=0.066, \quad T_{\text {max }}=$ 0.144

558 measured reflections
558 independent reflections

Refinement

Refinement on F
$R=0.036$
$w R=0.036$
$S=2.3$
484 reflections
13 parameters
Unit weights applied

$\mathbf{L u F e O}_{\mathbf{3}}(\mathbf{Z n O})_{\mathbf{4}}$

Crystal data
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{4}$
$M_{r}=604.33$
Hexagonal
$\mathrm{Pb}_{3} / \mathrm{mmc}$
$a=3.3406$ (1) \AA
$c=32.51$ (2) \AA
$V=314.2$ (2) \AA^{3}
$Z=2$
$D_{x}=6.39 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
by integration from crystal shape
$T_{\text {min }}=0.017, T_{\text {max }}=$
0.125

926 measured reflections
926 independent reflections

Refinement

Refinement on F
$R=0.050$
$w R=0.057$
$S=2.6$
733 reflections
23 parameters
Unit weights applied
$\mathbf{L u F e O}_{3}(\mathbf{Z n O})_{5}$
Crystal data
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})$ s
$M_{r}=685.71$

484 observed reflections
$[I>1.5 \sigma(I)]$
$\theta_{\text {max }}=60^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 61$
3 standard reflections
frequency: 240 min
intensity variation: -0.2%
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=7.9 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-11.9 \mathrm{e}^{-3}$
Extinction correction: applied
Extinction coefficient: $7.0(1) \times 10^{-6}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 22 reflections
$\theta=35-44^{\circ}$
$\mu=33.27 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.17 \times 0.16 \times 0.14 \mathrm{~mm}$
Brown

733 observed reflections
$[I>1.5 \sigma(I)]$
$\theta_{\text {max }}=60^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 79$
3 standard reflections frequency: 240 min intensity variation: -0.3%

Trigonal
$R \overline{3} m$
$a=3.3291$ (1) \AA
$c=56.56$ (2) \AA
$V=542.8(2) \AA^{3}$
$Z=3$
$D_{x}=6.29 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
by integration from crystal shape
$T_{\text {min }}=0.023, \quad T_{\text {max }}=$
0.182

1171 measured reflections
1171 independent reflections

Refinement

Refinement on F
$R=0.046$
$w R=0.053$
$S=4.2$
1060 reflections
25 parameters
Unit weights applied

$\mathrm{LuFeO}_{\mathbf{3}}(\mathbf{Z n O})_{6}$

Crystal data
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{6}$
$M_{r}=767.09$
Hexagonal
$P 6_{3} / m m c$
$a=3.3220$ (1) \AA
$c=42.91$ (2) \AA
$V=410.1(2) \AA^{3}$
$Z=2$
$D_{x}=6.21 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer

Absorption correction: by integration from crystal
$T_{\text {min }}=0.026, \quad T_{\text {max }}=$
1195 measured reflections 1195 independent reflections

Cell parameters from 24 reflections
$\theta=35-41^{\circ}$
$\mu=32.23 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.17 \times 0.15 \times 0.08 \mathrm{~mm}$
Brown

1060 observed reflections
$[I>1.5 \sigma(I)]$
$\theta_{\text {max }}=60^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 136$
3 standard reflections frequency: 240 min intensity variation: -1.9%
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=8.1 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-9.0 \mathrm{e}^{-3}$
Extinction correction: applied
Extinction coefficient: $5.08(5) \times 10^{-6}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 24 reflections
$\theta=40-41^{\circ}$
$\mu=31.38 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.13 \times 0.13 \times 0.07 \mathrm{~mm}$
Brown

795 observed reflections
$[I>1.5 \sigma(I)]$
$\theta_{\text {max }}=60^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 104$
3 standard reflections frequency: 240 min intensity variation: -0.6%
$\omega / 2 \theta$ scans shape
0.214

Refinement

Refinement on F
$R=0.066$
$w R=0.091$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=6.4 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-6.2 \mathrm{e}^{-3}$
Extinction correction: applied
Extinction coefficient:
$1.06(2) \times 10^{-6}$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=9.1 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-9.8 \mathrm{e}^{-3}$
$S=5.0$
795 reflections
29 parameters
Unit weights applied
Uni weights applied
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{cq}}=(1 / 3) \sum_{i} \sum_{j} U_{1}, a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{l} .
$$

$m=1$

	$x=y$	z	$U_{\text {eq }}$
Lu	0		
$M(1)$	0	$0.21564(3)$	$0.184(1)$
$\mathrm{O}(1)$	0	$0.1287(3)$	$0.028(1)$
$\mathrm{O}(2)$	0	$0.2923(2)$	$0.013(1)$

$m=4$				
	x	y	z	$U_{\text {eq }}$
Lu	0	0	0	$0.0118(1)$
$M(1)$	$1 / 3$	$2 / 3$	$1 / 4$	$0.0104(2)$
$M(2)$	0	0	$0.17203(4)$	$0.0117(2)$
$M(3)$	$1 / 3$	$2 / 3$	$0.09352(5)$	$0.0127(2)$
$\mathrm{O}(1)$	0	0	$1 / 4$	$0.049(6)$
$\mathrm{O}(2)$	$1 / 3$	$2 / 3$	$0.1827(4)$	$0.023(2)$
$\mathrm{O}(3)$	0	0	$0.1088(2)$	$0.014(1)$
$\mathrm{O}(4)$	$1 / 3$	$2 / 3$	$0.0330(3)$	$0.014(1)$

$m=5$			
	$x=y$	z	$U_{\text {e4 }}$
Lu	0	0	$0.0105(1)$
$M(1)$	0	$0.18921(2)$	$0.0101(1)$
$M(2)$	0	$0.09919(2)$	$0.0119(1)$
$M(3)$	0	$0.27952(2)$	$0.0122(1)$
$O(1)$	0	$0.1472(3)$	$0.041(3)$
$O(2)$	0	$0.2273(2)$	$0.019(1)$
$O(3)$	0	$0.0630(1)$	$0.012(1)$
$O(4)$	0	$0.3141(1)$	$0.012(1)$

$m=6$			z	$U_{\text {cq }}$
	x	y	0	$0.0109(1)$
Lu	0	0	$1 / 4$	$0.0112(4)$
$M(1)$	0	0	$0.19028(7)$	$0.0122(3)$
$M(2)$	$1 / 3$	$2 / 3$	$0.13094(6)$	$0.0137(3)$
$M(3)$	0	0	$0.07105(6)$	$0.0125(3)$
$M(4)$	$1 / 3$	$2 / 3$	$1 / 4$	$0.060(10)$
$\mathrm{O}(1)$	$1 / 3$	$2 / 3$	$0.1976(6)$	$0.030(4)$
$\mathrm{O}(2)$	0	0	$0.1407(3)$	$0.016(2)$
$\mathrm{O}(3)$	$1 / 3$	$2 / 3$	$0.0832(3)$	$0.013(2)$
$\mathrm{O}(4)$	0	0	$0.0234(5)$	$0.019(3)$
$\mathrm{O}(5)$	$1 / 3$	$2 / 3$		

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

		$m=1$	$m=4$	$m=5$	$m=6$
$\mathrm{Lu}-\mathrm{O}^{\text {™ }}$	(6×)	2.233 (2)	2.207 (4)	2.210 (3)	2.165 (10)
$\mathrm{O}^{\text {1.11 }}-\mathrm{O}^{1,4 i}$	$(6 \times$)	3.419 (1)	3.341 (1)	3.329 (1)	3.322 (1)
$\mathrm{O}^{\text {, }}$ - $-\mathrm{O}^{\text {in, }}$	($6 \times$)	2.874 (5)	2.884 (9)	2.907 (7)	2.776 (21)
$\mathrm{O}^{1.1}-\mathrm{Lu}-\mathrm{O}^{1.4}$	(6x)	99.9 (1)	98.4 (2)	97.8 (1)	100.2 (4)
$\mathrm{O}^{\prime \prime \prime}$ "-Lu-O",	(6x)	80.1 (1)	81.6 (2)	82.3 (1)	79.8 (4)
$M(1)-\mathrm{O}$	$(3 \times)$	1.993 (1)	1.929 (1)	1.930 (1)	1.918 (1)
$M(1)-\mathrm{O}^{1}$	$(1 \times$)	1.952 (5)	-	2.155 (9)	-
$M(1)-\mathrm{O}^{\text {i }}$	$(1 \times$)	2.215 (8)	-	2.377 (15)	-
$M(1)-\mathrm{O}^{\text {i, }}$	$(2 \times$)	-	2.190 (13)	-	2.249 (24)
$\mathrm{O}-\mathrm{O}$	(3x)	3.419 (1)	3.341 (1)	3.329 (1)	3.322 (1)
$\mathrm{O}-\mathrm{O}^{\text {i }}$	$(3 \times$)	2.979 (7)	-	3.019 (13)	-
$\mathrm{O}-\mathrm{O}^{\prime \prime}$	$(3 \times$)	2.764 (8)	-	2.924 (16)	-
$\mathrm{O}-\mathrm{O}^{1.1}$	($6 \times$)	-	2.918 (9)	-	2.956 (18)
$\mathrm{O}-\mathrm{M}(1)-\mathrm{O}$	$(3 \times)$	118.1 (1)	120	119.2 (1)	120
$\mathrm{O}-M(1)-\mathrm{O}^{4}$	(3x)	98.1 (2)	-	95.2 (4)	-
$\mathrm{O}-M(1)-\mathrm{O}^{\prime \prime}$	$(3 \times$)	81.9 (2)	-	84.9 (4)	-
$\mathrm{O}-M(1)-\mathrm{O}^{\prime \cdot}$	$(6 \times$)	-	90	-	90
$M(2)-\mathrm{O}$	$(3 \times)$	-	1.959 (2)	1.969 (2)	1.944 (4)
$M(2)-\mathrm{O}^{\prime}$	$(1 \times$)	-	2.056 (8)	2.047 (6)	2.127 (15)
$M(2)-\mathrm{O}^{4}$	$(1 \times$)	-	2.535 (1)	2.714 (15)	2.563 (3)
$\mathrm{O}-\mathrm{O}$	$(3 \times$)	-	3.341 (1)	3.329 (1)	3.322 (1)
$\mathrm{O}-\mathrm{O}^{+}$	$(3 \times$)	-	3.080 (12)	3.101 (8)	3.104 (22)
$\mathrm{O}-\mathrm{O}^{\text {i }}$	$(3 \times)$	-	2.918 (9)	3.019 (13)	2.956 (18)
$\mathrm{O}-\mathrm{M}(2)-\mathrm{O}$	$(3 \times$)	-	117.0 (2)	116.2 (1)	117.4 (3)
$\mathrm{O}-\mathrm{M}(2)-\mathrm{O}^{\text {' }}$	$(3 \times$)	-	100.1 (4)	101.4 (2)	99.3 (7)
$\mathrm{O}-\mathrm{M}(2)-\mathrm{O}^{\prime \prime}$	(3x)	-	79.9 (4)	78.6 (2)	80.7 (7)

$M(3)-\mathrm{O}$	$(3 \times)$	-	$1.992(2)$	$1.991(2)$	$1.963(3)$
$M(3)-\mathrm{O}^{\prime}$	$(1 \times)$	-	$1.969(9)$	$1.953(6)$	$2.049(14)$
$M(3)-\mathrm{O}^{\prime \prime}$	$(1 \times)$	-	$2.897(13)$	$2.953(9)$	$2.860(24)$
$\mathrm{O}-\mathrm{O}$	$(3 \times)$	-	$3.130(9)$	$3.132(7)$	$3.126(16)$
$\mathrm{O}-\mathrm{O}^{\prime \prime}$	$(3 \times)$	-	$3.080(12)$	$3.101(8)$	$3.104(22)$
$\mathrm{O}-M(3)-\mathrm{O}$	$(3 \times)$	-	$114.0(1)$	$113.4(1)$	$115.6(2)$
$\mathrm{O}-M(3)-\mathrm{O}^{\prime}$	$(3 \times)$	-	$104.4(2)$	$105.1(2)$	$102.3(4)$
$\mathrm{O}-M(3)-\mathrm{O}^{\prime \prime}$	$(3 \times)$	-	$75.6(2)$	$74.9(2)$	$77.7(4)$
$M(4)-\mathrm{O}$	$(3 \times)$		-	-	$1.987(4)$
$M(4)-\mathrm{O}^{\prime}$	$(1 \times)$	-	-	-	$2.046(21)$
$M(4)-\mathrm{O}^{\prime \prime}$	$(1 \times)$		-	$2.990(15)$	
$\mathrm{O}-\mathrm{O}$	$(3 \times)$		-	$3.322(1)$	
$\mathrm{O}-\mathrm{O}^{\prime}$	$(3 \times)$		-	$3.204(20)$	
$\mathrm{O}-\mathrm{O}^{\prime \prime}$	$(3 \times)$	-	-	$3.126(16)$	
$\mathrm{O}-M(4)-\mathrm{O}$	$(3 \times)$	-	-	$113.4(2)$	
$\mathrm{O}-M(4)-\mathrm{O}^{\prime}$	$(3 \times)$	-	-	$105.2(4)$	
$\mathrm{O}-M(4)-\mathrm{O}^{\prime \prime}$	$(3 \times)$	-	-	$74.8(4)$	

Note: In Fig. 1, atoms on the same c plane have the same labels, $M(1)$ $O(1)$, etc. In the table, atoms with the same roman superscripts denote atoms on the same c plane and thus would carry common labels. In the LuO_{6} octahedra, the labels of all O atoms are common. In the $M O$, bipyramids, superscript (i) denotes the shorter, and (ii) the longer, $M-\mathrm{O}$ distance.

Table 3. Site occupancies of Fe atoms and $w R$ values (\%)

$M(1)$	1	0	0	1/3	1/3	0	1/5	
$M(2)$	0	1	0	2/3	0	1/2	$2 / 5$	
M(3)	0	0	1	0	2/3	1/2	$2 / 5$	
$n \cdot \mathbf{R}$	6.58	5.98	6.08	5.75	5.88	5.72	5.66	
$m=5$								
M(1)	1	0	0	1/2	1/2	0	1/3	
$M(2)$	0	1	0	1/2	0	$1 / 2$	1/3	
$M(3)$	0	0	1	0	$1 / 2$	1/2	1/3	
$\omega \mathrm{R}$	5.53	5.61	5.96	5.23	5.44	5.49	5.28	
$m=6$								
$M(1)$	1	0	0	0	1/3	1/3	1/3	0
$M(2)$	0	1	0	0	2;3	0	0	1/2
M(3)	0	0	1	0	0	2/3	0	12
$M(4)$	0	0	0	1	0	0	$2 / 3$	0
w R	9.61	9.32	9.31	9.33	9.18	9.18	9.20	9.15
$M(1)$	0	0	1/5	1/5	1/5	0	$1 / 7$	
$M(2)$	1.2	0	$2 / 5$	0	$2 / 5$	1/3	$2 / 7$	
$M(3)$	0	1:2	$2 / 5$	2:5	0	$1 / 3$	2/7	
M(4)	$1 / 2$	1/2	0	$2 / 5$	2 25	1/3	2/7	
$\omega \mathrm{R}$	9.18	9.16	9.10	9.11	9.13	9.11	9.08	

The symmetry and approximate cell dimensions of the crystals were determined from both oscillation and Weissenberg photographs using $\mathrm{Cu} K \alpha$ radiation. For compounds with $m=$ odd (1 and 5), the only systematic absences occurred for reflections $-h+k+l$ with $3 n \pm 1$. For compounds with $m=$ even (4 and 6), the only systematic absences were $h h l$ for $l=2 n+1$. It was also found that only reflections with $h-k=3 n$ had observable intensities for $l=2 n$. From the possible space groups, $R \overline{3} m$ and $\mathrm{Pb}_{3} / \mathrm{mmc}$ were adopted in later stages of structure determination for $m=$ odd and even, respectively. The positions of the metal atoms, Lu, Fe and/or Zn , were found by direct methods. O atoms were located from the subsequent difference Fourier maps. The atomic scattering factors for neutral atoms and dispersion correction factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). All of the calculations were performed using SDP (B. A. Frenz \& Associates, Inc., 1985).

Lists of structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71533 (21 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS 1025]

References

Abrahams, S. C. \& Bernstein, J. L. (1969). Acta Cryst. B25, 1233-1236.
B. A. Frenz \& Associates, Inc. (1985). SDP Structure Determination Package. Version 4.0. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Kato, K., Kawada, I., Kimizuka, N. \& Katsura, T. (1975). Z. Kristallogr. 141, 314-320.
Kimizuka, N. \& Mohri, T. (1989). J. Solid State Chem. 78, 98-107.
Kimizuka, N., Mohri, T., Matsui, Y. \& Siratori, K. (1988). J. Solid State Chem. 74, 98-109.
Kimizuka, N. \& Takayama, E. (1981). J. Solid State Chem. 40, 109-116.
Lappe, F., Niggli, A., Nitsche, R. \& White, J. G. (1962). Z. Kristallogr. 117, 146-152.
Malaman, B., Evrard, O., Tannieres, N., Aubry, J., Courtois, A. \& Protas, J. (1975). Acta Cryst. B31, 1310-1312.

Acta Cryst. (1994). C50, 336-338
Structure of $\mathbf{K}_{\mathbf{2}} \mathbf{C o}_{\mathbf{2}}\left(\mathrm{SeO}_{\mathbf{3}}\right)_{\mathbf{3}}$
M. WILDNER

Institut für Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
(Received 27 April 1993; accepted 9 August 1993)

Abstract

The structure of hexagonal dicobalt dipotassium triselenite, $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$, is composed of CoO_{6} octahedra, KO_{9} polyhedra and two crystallographically different types of pyramidal SeO_{3} groups. Pairs of face-sharing CoO_{6} octahedra are linked via the SeO_{3} groups forming $\left[\mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right]^{2-}$ layers parallel to (0001), which are connected by the K atoms. This new structure type is closely related to the buetschliite-type compounds $\mathrm{K}_{2} M\left(\mathrm{OO}_{3}\right)_{2}(M=\mathrm{Ca}$, Mg with $X=\mathrm{C}$, and $M=\mathrm{Co}$, Mn with $X=\mathrm{Se}$).

\section*{Comment}

Single crystals of $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ were obtained as a by-product in experiments aimed at the hydrothermal synthesis of the zemannite-type compound $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Wildner, 1993), starting with appropriate mixtures of $\mathrm{Co}(\mathrm{OH})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{SeO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ in synthesis (i) (giving both compounds) or Co powder, $\mathrm{H}_{2} \mathrm{SeO}_{3}, \mathrm{KOH}$ and $\mathrm{H}_{2} \mathrm{O}$ in synthesis (ii) [giving only $\mathrm{K}_{2} \mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$] in closed teflon-lined steel vessels at $\sim 493(5) \mathrm{K}(6 \mathrm{~d})$. X-ray intensity data were collected from a crystal obtained by synthesis

Fig. 1. Projection of the title structure along a direction slightly inclined to [$11 \frac{1}{2} 0$], showing the environment of the K atom. Only one of the two Se 2 positions related by the mirror plane parallel to (0001) is randomly occupied.
(ii) and the structure was solved by interpretation of a three-dimensional Patterson function and a subsequent Fourier synthesis. The atomic arrangement is illustrated in Fig. 1.

All cations occupy sites with $3 m$ symmetry. The CoO_{6} octahedra share faces via the O 2 atoms forming $\mathrm{Co}_{2} \mathrm{O}_{9}$ dimers. The repulsion between two neighbouring Co atoms $[\mathrm{Co} \cdots \mathrm{Co}=2.957$ (1) $\AA]$ results in an off-centring of the Co atoms along the threefold axis and in markedly different distances to O 1 and O 2 . The mean $\mathrm{Co}-\mathrm{O}$ distance ($2.123 \AA$) is in the usual range and correlates with the expectations from the observed bond-length distortion (Wildner, 1992a). The CoO_{6} octahedra share all their corners with SeO_{3} groups, thus forming $\left[\mathrm{Co}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right]^{2-}$ double-octahedral layers parallel to (0001). The Sel atoms are one-sided pyramidally coordinated to three Ol atoms with usual interatomic bond lengths and angles (Hawthorne, Groat \& Ercit, 1987; Fischer \& Zemann, 1974); the Se apices and their lone-pair electrons point towards the centre of the layers. The Se2 atoms have an occupancy factor of only 0.5 and are randomly distributed on one of two positions $\left[\mathrm{Se} 2 \cdots \mathrm{Se} 2^{\prime}=1.237(2) \AA\right]$ symmetrically related by the mirror planes parallel to (0001) which contain the O 2 atoms. The $\mathrm{Se} 2-\mathrm{O} 2$ distances are very short and the pyramids are extremely flattened compared to the average shapes of SeO_{3} groups reported in the literature $\left(\mathrm{Se}-\mathrm{O}=1.709 \AA, \mathrm{O}-\mathrm{Se}-\mathrm{O}=100.2^{\circ}\right.$; Hawthorne, Groat \& Ercit, 1987). This structural feature

